Molecular machines stimulate intercellular calcium waves and trigger muscle contraction


  • Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Tsutsumi, M. et al. Mechanical-stimulation-evoked calcium waves in proliferating and differentiated human keratinocytes. Cell Tissue Res. 338, 99–106 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Screaton, R. A. et al. The CREB coactivator TORC2 features as a calcium- and cAMP-sensitive coincidence detector. Cell 119, 61–74 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Carrasco, M. A. & Hidalgo, C. Calcium microdomains and gene expression in neurons and skeletal muscle cells. Cell Calcium 40, 575–583 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Glaser, T. et al. ATP and spontaneous calcium oscillations management neural stem cell destiny willpower in Huntington’s illness: a novel strategy for cell clock analysis. Mol. Psychiatry 26, 2633–2650 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tada, M. & Concha, M. L. Vertebrate gastrulation: calcium waves orchestrate cell actions. Curr. Biol. 11, R470–R472 (2001).

    Article 
    CAS 

    Google Scholar
     

  • McCormack, J. G., Halestrap, A. P. & Denton, R. M. Position of calcium ions in regulation of mammalian intramitochondrial metabolism. Phys. Rev. 70, 391–425 (1990).

    CAS 

    Google Scholar
     

  • Leybaert, L. & Sanderson, M. J. Intercellular Ca2+ waves: mechanisms and performance. Phys. Rev. 92, 1359–1392 (2012).

    CAS 

    Google Scholar
     

  • Eng, G. et al. Autonomous beating price adaptation in human stem cell-derived cardiomyocytes. Nat. Commun. 7, 10312 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Llano, I. et al. Presynaptic calcium shops underlie large-amplitude miniature IPSCs and spontaneous calcium transients. Nat. Neurosci. 3, 1256–1265 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Takano, T. et al. Astrocyte-mediated management of cerebral blood movement. Nat. Neurosci. 9, 260–267 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Drumm, B. T. et al. The results of mitochondrial inhibitors on Ca2+ signalling and electrical conductances required for pacemaking in interstitial cells of Cajal within the mouse small gut. Cell Calcium 72, 1–17 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gourine, A. V. et al. Astrocytes management respiratory by way of pH-dependent launch of ATP. Science 329, 571–575 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Berridge, M. J. Calcium signaling reworking and illness. Biochem. Soc. Trans. 40, 297–309 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Stewart, T. A., Yapa, Ok. T. D. S. & Monteith, G. R. Altered calcium signaling in most cancers cells. Biochim. Biophys. Acta Biomembr. 1848, 2502–2511 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Berridge, M. J., Lipp, P. & Bootman, M. D. The flexibility and universality of calcium signaling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Cornell-Bell, A. H. et al. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Sanderson, M. J., Charles, A. C. & Dirksen, E. R. Mechanical stimulation and intercellular communication will increase intracellular Ca2+ in epithelial cells. Cell Regul. 1, 585–596 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Klok, M. et al. MHz unidirectional rotation of molecular rotary motors. J. Am. Chem. Soc. 130, 10484–10485 (2008).

    Article 
    CAS 

    Google Scholar
     

  • García-López, V. et al. Unimolecular submersible nanomachines. synthesis, actuation, and monitoring. Nano Lett. 15, 8229–8239 (2015).

    Article 

    Google Scholar
     

  • García-López, V. et al. Molecular machines open cell membranes. Nature 548, 567–572 (2017).

    Article 

    Google Scholar
     

  • Zheng, Y. et al. Optoregulated pressure software to mobile receptors utilizing molecular motors. Nat. Commun. 12, 3580 (2021).

    Article 
    CAS 

    Google Scholar
     

  • García-López, V., Liu, D. & Tour, J. M. Mild-activated natural molecular motors and their purposes. Chem. Rev. 120, 79–124 (2020).

    Article 

    Google Scholar
     

  • Pollard, M. M., Klok, M., Pijper, D. & Feringa, B. L. Fee acceleration of light-driven rotary molecular motors. Adv. Func. Mater. 17, 718–729 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Alaya-Orozco, C. et al. Seen-light-activated molecular nanomachines kill pancreatic most cancers cells. ACS Appl. Mater. Int. 12, 410–417 (2020).

    Article 

    Google Scholar
     

  • Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J. & Kroemer, G. Cell dying assays for drug discovery. Nat. Rev. Drug Discov. 10, 221–237 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Galbadage, T. et al. Molecular nanomachines disrupt bacterial cell wall, growing sensitivity of extensively drug-resistant Klebsiella pneumoniae to meropenem. ACS Nano 13, 14377–14387 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Santos, A. L. et al. Mild-activated molecular machines are fast-acting broad-spectrum antibacterials that concentrate on the membrane. Sci. Adv. 8, eabm2055 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Vriens, J., Appendino, G. & Nilius, B. Pharmacology of vanilloid transient receptor potential cation channels. Mol. Pharmacol. 75, 1262–1279 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Hamill, O. P. & McBride, D. W. Jr The pharmacology of mechanogated membrane ion channels. Pharmacol. Rev. 48, 231–252 (1996).

    CAS 

    Google Scholar
     

  • Thastrup, O., Cullen, P. J., Drøbak, B. Ok., Hanley, M. R. & Dawson, A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ shops by particular inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc. Natl Acad. Sci. USA 87, 2466–2470 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Bock, G. R. & Ackrill, Ok. Calcium Waves, Gradients and Oscillations (Wiley, 2008).

  • Gafni, J. et al. Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron 19, 723–733 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Ribeiro, C. M. P., Reece, J. & Putney, J. W. Position of the cytoskeleton in calcium signaling in NIH 3T3 cells. J. Biol. Chem. 272, 26555–26561 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. GPR68 senses movement and is crucial for vascular physiology. Cell 173, 762–775.e16 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Feher, J. Quantitative Human Physiology: An Introduction 351–361 (Elsevier, 2007).

  • Stuyvers, B. D., Boyden, P. A. & ter Keurs, H. E. D. J. Calcium waves. Circ. Res. 86, 1016–1018 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. et al. A whole biomechanical mannequin of Hydra contractile behaviors, from neural drive to muscle to motion. Proc. Natl Acad. Sci. 120, e2210439120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Goel, T., Wang, R., Martin, S. & Collins, E.-M. S. Linalool acts as a quick and reversible anesthetic in Hydra. PLoS ONE 14, e0224221 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Takaku, Y. et al. Innexin hole junctions in nerve cells coordinate spontaneous contractile conduct in Hydra polyps. Sci. Rep. 4, 3573 (2014).

    Article 

    Google Scholar
     

  • Kinnamon, J. C. & Westfall, J. A. A 3 dimensional serial reconstruction of neuronal distributions within the hypostome of a Hydra. J. Morphol. 168, 321–329 (1981).

    Article 

    Google Scholar
     

  • Kinnamon, J. C. & Westfall, J. A. Sorts of neurons and synaptic connections at hypostome-tentacle junctions in Hydra. J. Morphol. 173, 119–128 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Dupre, C. & Yuste, R. Non-overlapping neural networks in Hydra vulgaris. Curr. Biol. 27, 1085–1097 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Badhiwala, Ok. N., Primack, A. S., Juliano, C. E. & Robinson, J. T. A number of neuronal networks coordinate Hydra mechanosensory conduct. eLife 10, e64108 (2020).

    Article 

    Google Scholar
     

  • Guertin, S. & Kass-Simon, G. Extraocular spectral photosensitivity within the tentacles of Hydra vulgaris. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 184, 163–170 (2015).

    Article 
    CAS 

    Google Scholar
     

  • van Venrooy, A. et al. Probing the rotary cycle of amine-substituted molecular motors. J. Org. Chem. 88, 762–770 (2023).

    Article 

    Google Scholar
     

  • Garcia-Lopez, V. et al. Synthesis of light-driven motorized nanocars for linear trajectories and their detailed NMR structural willpower. Tetrahedron 73, 4864–4873 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sinnecker, D. & Schaefer, M. Actual-time evaluation of phospholipase C exercise throughout completely different patterns of receptor-induced Ca2+ responses in HEK293 cells. Cell Calcium 35, 29–38 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Lancon, A. et al. Human hepatic cell uptake of resveratrol: involvement of each passive diffusion and carrier-mediated course of. Biochem. Biophys. Res. Commun. 4, 1132–1137 (2004).

    Article 

    Google Scholar
     

  • Roke, D. et al. Mild-gated rotation in a molecular motor functionalized with a dithienylethene swap. Angew. Chem. Int. Ed. 57, 10515–10519 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Saywell, A. et al. Mild-induced translation of motorized molecules on a floor. ACS Nano 10, 10945–10952 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 16 Rev. A.03 (Wallingford, 2016).

  • Dennington, R., Keith, T. A and Millam, J. M. GaussView model 6 (Semichem, 2019).

  • Tao, J., Perdew, J. P., Staroverov, V. N. & Scuseria, G. E. Climbing the density practical principle ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401 (2003).

    Article 

    Google Scholar
     

  • Weigend, F. & Ahlrichs, R. Balanced foundation units of cut up valence, triple zeta valence and quadruple zeta valence high quality for H to Rn: design and evaluation of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Grimme, S., Ehrlich, S. & Georigk, L. Impact of the damping operate in dispersion corrected density practical principle. J. Comp. Chem. 32, 1456–1465 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Dunlap, B. I. Strong and variational becoming: eradicating the four-center integrals from middle stage in quantum chemistry. J. Mol. Struct. THEOCHEM 529, 37–40 (2000).

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density practical dispersion correction (DFT-D) for the 94 components H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 

    Google Scholar
     

  • Stratmann, R. E., Scuseria, G. E. & Frisch, M. J. Attaining linear scaling in exchange-correlation density practical quadratures. Chem. Phys. Lett. 257, 213–223 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, X., Fan, B., Hassan, S., Veeraraghavan, A. & Robinson, J. T. Close to area optical sensing of single cell exercise with built-in micro-ring resonators. In Biophotonics Congress 2021 paper BTu3B.4 (Optical Society of America, 2021).

  • Gunasekera, R. S. et al. Molecular nanomachines can destroy tissue or kill multicellular eukaryotes. ACS Appl. Mater. Int. 12, 13657–13670 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hajnoczky, G., Davies, E. & Madesh, M. Calcium signaling and apoptosis. Biochem. Biophys. Ref. Commun. 304, 445–454 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Cnossen, A., Kistemaker, J. C. M., Kojima, T. & Feringa, B. L. Structural dynamics of overcrowded alkene-based molecular motors throughout thermal isomerization. J. Org. Chem. 79, 927–935 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Nagaraja, D. et al. Solvent impact on the relative quantum yield and fluorescence quenching of a newly synthesized coumarin spinoff. Luminescence 30, 495–502 (2014).

    Article 

    Google Scholar
     

  • Tzouanas, C. N. et al. Hydra present secure responses to thermal stimulation regardless of massive modifications within the variety of neurons. iScience 24, 102490 (2021).

    Article 

    Google Scholar
     

  • Grunder, S. & Assmann, M. Peptide-gated ion channels and the easy nervous system of Hydra. J. Exp. Biol. 218, 551–561 (2015).

    Article 

    Google Scholar
     

  • Grigoryan, B. et al. Growth, characterization, and purposes of multi-material stereolithography bioprinting. Sci. Rep. 11, 3171 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mizuno, Ok., Kurokawa, Ok. & Ohkuma, S. Regulation of sort 1 IP3 receptor expression by dopamine D2-like receptors by way of AP-1 and NFATc4 activation. Neuropharmacology 71, 264–272 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Latest articles

    Related articles

    Leave a reply

    Please enter your comment!
    Please enter your name here