Transport by circulating myeloid cells drives liposomal accumulation in infected synovium


  • Sercombe, L. et al. Advances and challenges of liposome assisted drug supply. Entrance. Pharmacol. 6, 286 (2015).

    Article 

    Google Scholar
     

  • Giulimondi, F. et al. Interaction of protein corona and immune cells controls blood residency of liposomes. Nat. Commun. 10, 3686 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a technique for enhancing nanoparticle-based drug and gene supply. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lundqvist, M. et al. Nanoparticle dimension and floor properties decide the protein corona with doable implications for organic impacts. Proc. Natl Acad. Sci. USA 105, 14265–14270 (2008).

  • Ren, H. et al. Position of liposome dimension, floor cost, and PEGylation on rheumatoid arthritis focusing on remedy. ACS Appl. Mater. Interfaces 11, 20304–20315 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, M., Feng, X., Ding, J., Chang, F. & Chen, X. Nanotherapeutics relieve rheumatoid arthritis. J. Management. Launch 252, 108–124 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gawne, P. J. et al. PET imaging of liposomal glucocorticoids utilizing 89 Zr-oxine: theranostic purposes in inflammatory arthritis. Theranostics 10, 3867–3879 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Metselaar, J. M. et al. Liposomal focusing on of glucocorticoids to synovial lining cells strongly will increase therapeutic profit in collagen kind II arthritis. Ann. Rheum. Dis. 63, 348–353 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Matsumura, Y. & Maeda, H. A brand new idea for macromolecular therapeutics in most cancers chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Most cancers Res. 46, 6387–6392 (1986).

    CAS 

    Google Scholar
     

  • Danhier, F. To take advantage of the tumor microenvironment: because the EPR impact fails within the clinic, what’s the way forward for nanomedicine? J. Management. Launch 244, 108–121 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Davignon, J. L. et al. Focusing on monocytes/macrophages within the remedy of rheumatoid arthritis. Rheumatology 52, 590–598 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kaplan, M. J. Position of neutrophils in systemic autoimmune ailments. Arthritis Res. Ther. 15, 219 (2013).

    Article 

    Google Scholar
     

  • Izar, M. C. O. et al. Monocyte subtypes and the CCR2 chemokine. Clin. Sci. (Lond.) 131, 1215–1224 (2017).

  • McInnes, I. B. & Schett, G. Pathogenetic insights from the remedy of rheumatoid arthritis. Lancet 389, 2328–2337 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Dammes, N. et al. Conformation-sensitive focusing on of lipid nanoparticles for RNA therapeutics. Nat. Nanotechnol. 16, 1030–1038 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sofias, A. M., Andreassen, T. & Hak, S. Nanoparticle ligand-decoration procedures have an effect on in vivo interactions with immune cells. Mol. Pharm. 15, 5754–5761 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chu, D., Gao, J. & Wang, Z. Neutrophil-mediated supply of therapeutic nanoparticles throughout blood vessel barrier for remedy of irritation and an infection. ACS Nano 9, 11800–11811 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Karathanasis, E. et al. Selective focusing on of nanocarriers to neutrophils and monocytes. Ann. Biomed. Eng. 37, 1984–1992 (2009).

    Article 

    Google Scholar
     

  • Veiga, N. et al. Leukocyte-specific siRNA supply revealing IRF8 as a possible anti-inflammatory goal. J. Management. Launch 313, 33–41 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vargason, A. M., Anselmo, A. C. & Mitragotri, S. The evolution of business drug supply applied sciences. Nat. Biomed. Eng. 5, 951–967 (2021).

  • El Kebir, D. E. & Filep, J. G. Modulation of neutrophil apoptosis and the decision of irritation by means of β2 integrins. Entrance. Immunol. 4, 60 (2013).

    Article 

    Google Scholar
     

  • Braeckmans, Ok. et al. Sizing nanomatter in organic fluids by fluorescence single particle monitoring. Nano Lett. 10, 4435–4442 (2010).

  • Chen, D., Ganesh, S., Wang, W. & Amiji, M. Plasma protein adsorption and organic identification of systemically administered nanoparticles. Nanomedicine 12, 2113–2135 (2017).

    Article 
    CAS 

    Google Scholar
     

  • De Chermont, Q. L. M. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl Acad. Sci. USA 104, 9266–9271 (2007).

    Article 

    Google Scholar
     

  • Smith, W. J. et al. Lipophilic indocarbocyanine conjugates for environment friendly incorporation of enzymes, antibodies and small molecules into organic membranes. Biomaterials 161, 57 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hofkens, W., Storm, G., Van Den Berg, W. B. & Van Lent, P. L. Liposomal focusing on of glucocorticoids to the infected synovium inhibits cartilage matrix destruction throughout murine antigen-induced arthritis. Int. J. Pharm. 416, 486–492 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kratofil, R. M., Kubes, P. & Deniset, J. F. Monocyte conversion throughout irritation and damage. Arterioscler. Thromb. Vasc. Biol. 37, 35–42 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gschwandtner, M., Derler, R. & Midwood, Ok. S. Extra than simply enticing: how CCL2 influences myeloid cell habits past chemotaxis. Entrance. Immunol. 10, 2759 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Seeuws, S. et al. A multiparameter method to observe illness exercise in collagen-induced arthritis. Arthritis Res. Ther. 12, R160 (2010).

    Article 

    Google Scholar
     

  • Tu, J. et al. Ontogeny of synovial macrophages and the roles of synovial macrophages from completely different origins in arthritis. Entrance. Immunol. 10, 1146 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hoeffel, G. et al. Grownup Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages. J. Exp. Med. 209, 1167–1181 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Inglis, J. J. et al. Collagen-induced arthritis in C57BL/6 mice is related to a strong and sustained T-cell response to kind II collagen. Arthritis Res. Ther. 9, R113 (2007).

    Article 

    Google Scholar
     

  • Asquith, D. L., Miller, A. M., McInnes, I. B. & Liew, F. Y. Animal fashions of rheumatoid arthritis. Eur. J. Immunol. 39, 2040–2044 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wipke, B. T. & Allen, P. M. Important function of neutrophils within the initiation and development of a murine mannequin of rheumatoid arthritis. J. Immunol. 167, 1601–1608 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Akinc, A. et al. The Onpattro story and the medical translation of nanomedicines containing nucleic acid-based medicine. Nat. Nanotechnol. 14, 1084–1087 (2019).

  • Kulkarni, J. A., Witzigmann, D., Chen, S., Cullis, P. R. & Van Der Meel, R. Lipid nanoparticle expertise for medical translation of siRNA therapeutics. Acc. Chem. Res. 52, 2435–2444 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, X. et al. Floor de-PEGylation controls nanoparticle-mediated siRNA supply in vitro and in vivo. Theranostics 7, 1990–2002 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cambré, I. et al. Mechanical pressure determines the site-specific localization of irritation and tissue harm in arthritis. Nat. Commun. 9, 4613 (2018).

    Article 

    Google Scholar
     

  • Meghraoui-Kheddar, A., Barthelemy, S., Boissonnas, A. & Combadière, C. Revising CX3CR1 expression on murine classical and non-classical monocytes. Entrance. Immunol. 11, 1117 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kinne, R. W. Macrophages in rheumatoid arthritis. Arthritis Res. Ther. 2, 189 (2000).

  • Veiga, N. et al. Cell particular supply of modified mRNA expressing therapeutic proteins to leukocytes. Nat. Commun. 9, 4493 (2018).

    Article 

    Google Scholar
     

  • Wyatt Shields, C. et al. Mobile backpacks for macrophage immunotherapy. Sci. Adv. 6, eaaz6579 (2020).

    Article 

    Google Scholar
     

  • Kumar, R. A., Li, Y., Dang, Q. & Yang, F. Monocytes in rheumatoid arthritis: circulating precursors of macrophages and osteoclasts and, their heterogeneity and plasticity function in RA pathogenesis. Int. Immunopharmacol. 65, 348–359 (2018).

    Article 

    Google Scholar
     

  • Kim, J. & Sahay, G. Nanomedicine hitchhikes on neutrophils to the infected lung. Nat. Nanotechnol. 17, 1–2 (2021).

    Article 

    Google Scholar
     

  • Palchetti, S. et al. The protein corona of circulating PEGylated liposomes. Biochim. Biophys. Acta Biomembr. 1858, 189–196 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Schöttler, S. et al. Protein adsorption is required for stealth impact of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11, 372–377 (2016).

    Article 

    Google Scholar
     

  • Francia, V., Schiffelers, R. M., Cullis, P. R. & Witzigmann, D. The biomolecular corona of lipid nanoparticles for gene remedy. Bioconjugate Chem. 31, 2046–2059 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dale, D. C., Boxer, L., & Liles, W. C. The phagocytes: neutrophils and monocytes. Blood 112, 935–945 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29, 1005–1010 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Novobrantseva, T. I. et al. Systemic RNAi-mediated gene silencing in nonhuman primate and rodent myeloid cells. Mol. Ther. Nucleic Acids 1, e4 (2012).

    Article 

    Google Scholar
     

  • Li, C. et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 23, 543–555 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lenart, Ok. et al. A 3rd dose of the unmodified COVID-19 mRNA vaccine CVnCoV enhances high quality and amount of immune responses. Mol. Ther. Strategies Clin. Dev. 27, 309–323 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jafarzadeh, A., Chauhan, P., Saha, B., Jafarzadeh, S. & Nemati, M. Contribution of monocytes and macrophages to the native tissue irritation and cytokine storm in COVID-19: classes from SARS and MERS, and potential therapeutic interventions. Life Sci. 257, 118102 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Martinez, F. O., Combes, T. W., Orsenigo, F. & Gordon, S. Monocyte activation in systemic Covid-19 an infection: assay and rationale. eBioMedicine 59, 102964 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, D. et al. COVID‐19 an infection induces readily detectable morphologic and irritation‐associated phenotypic adjustments in peripheral blood monocytes. J. Leukoc. Biol. 109, 13–22 (2020).

  • Pence, B. D. Extreme COVID-19 and getting old: are monocytes the important thing? GeroScience 42, 1051–1061 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ragab, D., Salah Eldin, H., Taeimah, M., Khattab, R. & Salem, R. The COVID-19 cytokine storm; what we all know up to now. Entrance. Immunol. 11, 1446 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yoshimura, T. The manufacturing of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. Cytokine 98, 71–78 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Parihar, A., Eubank, T. D. & Doseff, A. I. Monocytes and macrophages regulate immunity by means of dynamic networks of survival and cell loss of life. J. Innate Immun. 2, 204–215 (2010).

    Article 

    Google Scholar
     

  • Yang, J., Zhang, L., Yu, C., Yang, X. F. & Wang, H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory ailments. Biomark. Res. 2, 1 (2014).

    Article 

    Google Scholar
     

  • Lammers, T. et al. Dexamethasone nanomedicines for COVID-19. Nat. Nanotechnol. 15, 622–624 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Benchimol, M. J., Bourne, D., Moghimi, S. M. & Simberg, D. Pharmacokinetic evaluation reveals limitations and alternatives for nanomedicine focusing on of endothelial and extravascular compartments of tumors. J. Drug Goal. 27, 690–698 (2019).

    Article 

    Google Scholar
     

  • Fang, J., Nakamura, H. & Maeda, H. The EPR impact: distinctive options of tumor blood vessels for drug supply, components concerned, and limitations and augmentation of the impact. Adv. Drug Deliv. Rev. 63, 136–151 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Brocato, T. A. et al. Understanding the connection between nanoparticle uptake and most cancers remedy efficacy utilizing mathematical modeling. Sci. Rep. 8, 7538 (2018).

    Article 

    Google Scholar
     

  • Avnir, Y. et al. Amphipathic weak acid glucocorticoid prodrugs remote-loaded into sterically stabilized nanoliposomes evaluated in arthritic rats and in a Beagle canine: a novel method to treating autoimmune arthritis. Arthritis Rheum. 58, 119–129 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Avnir, Y. et al. Fabrication rules and their contribution to the superior in vivo therapeutic efficacy of nano-liposomes distant loaded with glucocorticoids. PLoS ONE 6, e25721 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Verbeke, R. et al. Broadening the message: a nanovaccine co-loaded with messenger RNA and α-GalCer induces antitumor immunity by means of standard and pure killer T cells. ACS Nano 13, 1655–1669 (2019).

    CAS 

    Google Scholar
     

  • Kulkarni, J. A. et al. Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads. Nanoscale 11, 9023–9031 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kulkarni, J. A. et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12, 4787–4795 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hirota, S., De Ilarduya, C. T., Barron, L. G. & Szoka, F. C. Easy mixing system to reproducibly put together cationic lipid-DNA complexes (lipoplexes). Biotechniques 27, 286–290 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Kulkarni, J. A. et al. Fast synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles. Nanoscale 9, 13600–13609 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kannan, Ok., Ortmann, R. A. & Kimpel, D. Animal fashions of rheumatoid arthritis and their relevance to human illness. Pathophysiology 12, 167–181 (2005).

    Article 

    Google Scholar
     

  • Seemann, S., Zohles, F. & Lupp, A. Complete comparability of three completely different animal fashions for systemic irritation. J. Biomed. Sci. 24, 60 (2017).

    Article 

    Google Scholar
     

  • Latest articles

    Related articles

    Leave a reply

    Please enter your comment!
    Please enter your name here