Investigation of the improved antitumour efficiency of STING agonist after conjugation to polymer nanoparticles


  • Yum, S., Li, M., Frankel, A. E. & Chen, Z. J. Roles of the cGAS-STING pathway in most cancers immunosurveillance and immunotherapy. Annu. Rev. Most cancers Biol. 3, 323–344 (2019).

    Article 

    Google Scholar
     

  • Kwon, J. & Bakhoum, S. F. The cytosolic DNA-sensing cGAS–STING pathway in most cancers. Most cancers Discov. 10, 26 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, kind I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Barber, G. N. STING: an infection, irritation and most cancers. Nat. Rev. Immunol. 15, 760–770 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M. J. & Kroemer, G. Sort I interferons in anticancer immunity. Nat. Rev. Immunol. 15, 405–414 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Woo, S.-R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Nicolai, C. J. et al. NK cells mediate clearance of CD8+ T cell–resistant tumors in response to STING agonists. Sci. Immunol. 5, eaaz2738 (2020).

  • Nakamura, T. et al. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis through NK cell activation. J. Immunother. Most cancers 9, e002852 (2021).

  • Fu, J. et al. STING agonist formulated most cancers vaccines can remedy established tumors proof against PD-1 blockade. Sci. Transl. Med. 7, 283ra252 (2015).

    Article 

    Google Scholar
     

  • Dosta, P. et al. Supply of stimulator of interferon genes (STING) agonist utilizing polypeptide-modified dendrimer nanoparticles within the remedy of melanoma. Adv. NanoBiomed Res. 1, 2100006 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ablasser, A. et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that prompts STING. Nature 498, 380–384 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    Article 

    Google Scholar
     

  • Zhang, X. et al. Cyclic GMP-AMP containing blended phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 51, 226–235 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S. E. et al. Enchancment of STING-mediated most cancers immunotherapy utilizing immune checkpoint inhibitors as a game-changer. Most cancers Immunol. Immunother. 71, 3029–3042 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jneid, B. et al. Selective STING stimulation in dendritic cells primes antitumor T cell responses. Sci. Immunol. 8, eabn6612 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. et al. cGAS is important for the antitumor impact of immune checkpoint blockade. Proc. Natl Acad. Sci. USA 114, 1637–1642 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Meric-Bernstam, F. et al. Section Ib examine of MIW815 (ADU-S100) together with spartalizumab (PDR001) in sufferers (pts) with superior/metastatic strong tumors or lymphomas. J. Clin. Oncol. 37, 2507 (2019).

    Article 

    Google Scholar
     

  • Harrington, Okay. J. et al. Preliminary outcomes of the first-in-human (FIH) examine of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or together with pembrolizumab (pembro) in sufferers with superior strong tumors or lymphomas. Ann. Oncol. 29, VIII712 (2018).

    Article 

    Google Scholar
     

  • Shae, D. et al. Endosomolytic polymersomes enhance the exercise of cyclic dinucleotide STING agonists to boost most cancers immunotherapy. Nat. Nanotechnol. 14, 269–278 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Watkins-Schulz, R. et al. A microparticle platform for STING-targeted immunotherapy enhances pure killer cell- and CD8+ T cell-mediated anti-tumor immunity. Biomaterials 205, 94–105 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Koshy, S. T., Cheung, A. S., Gu, L., Graveline, A. R. & Mooney, D. J. Liposomal supply enhances immune activation by STING agonists for most cancers immunotherapy. Adv. Biosyst. 1, 1600013 (2017).

    Article 

    Google Scholar
     

  • Lin, Z. P. et al. Macrophages actively transport nanoparticles in tumors after extravasation. ACS Nano 16, 6080–6092 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Miller, M. A. et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat. Commun. 6, 8692 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Korangath, P. et al. Nanoparticle interactions with immune cells dominate tumor retention and induce T cell–mediated tumor suppression in fashions of breast most cancers. Sci. Adv. 6, eaay1601 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dane, E. L. et al. STING agonist supply by tumour-penetrating PEG-lipid nanodiscs primes strong anticancer immunity. Nat. Mater. 21, 710–720 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Solar, X. et al. Amplifying STING activation by cyclic dinucleotide–manganese particles for native and systemic most cancers metalloimmunotherapy. Nat. Nanotechnol. 16, 1260–1270 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Riley, R. S., June, C. H., Langer, R. & Mitchell, M. J. Supply applied sciences for most cancers immunotherapy. Nat. Rev. Drug Discov. 18, 175–196 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wehbe, M. et al. Nanoparticle supply improves the pharmacokinetic properties of cyclic dinucleotide STING agonists to open a therapeutic window for intravenous administration. J. Management. Launch 330, 1118–1129 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, S. M., Williams, A. & Eisenbarth, S. C. Construction and performance of the immune system within the spleen. Sci. Immunol. 4, eaau6085 (2019).

  • Bronte, V. & Pittet, MikaelJ. The spleen in native and systemic regulation of immunity. Immunity 39, 806–818 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Segovia, N., Dosta, P., Cascante, A., Ramos, V. & Borrós, S. Oligopeptide-terminated poly(β-amino ester)s for extremely environment friendly gene supply and intracellular localization. Acta Biomater. 10, 2147–2158 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Dosta, P., Ramos, V. & Borrós, S. Steady and environment friendly technology of poly(β-amino ester)s for RNAi supply. Mol. Syst. Des. Eng. 3, 677–689 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dosta, P. et al. Supply of anti-microRNA-712 to infected endothelial cells utilizing poly(beta-amino ester) nanoparticles conjugated with VCAM-1 concentrating on peptide. Adv. Healthcare Mater. 10, 2001894 (2021).

  • Nunez-Toldra, R. et al. Enchancment of osteogenesis in dental pulp pluripotent-like stem cells by oligopeptide-modified poly(beta-amino ester)s. Acta Biomater. 53, 152–164 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Dosta, P. et al. Supply of siRNA to endothelial cells in vivo utilizing lysine/histidine oligopeptide-modified poly(beta-amino ester) nanoparticles. Cardiovasc. Eng. Technol. 12, 114–125 (2021).

    Article 

    Google Scholar
     

  • Dosta, P., Segovia, N., Cascante, A., Ramos, V. & Borrós, S. Floor cost tunability as a robust technique to regulate electrostatic interplay for prime effectivity silencing, utilizing tailor-made oligopeptide-modified poly(beta-amino ester)s (PBAEs). Acta Biomater. 20, 82–93 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Puigmal, N., Ramos, V., Artzi, N. & Borrós, S. Poly(β-amino ester)s-based supply techniques for focused transdermal vaccination. Pharmaceutics 15, 1262 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Vyskocil, S. et al. Identification of novel carbocyclic pyrimidine cyclic dinucleotide STING agonists for antitumor immunotherapy utilizing systemic intravenous route. J. Med. Chem. 64, 6902–6923 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Alouane, A., Labruère, R., Le Saux, T., Schmidt, F. & Jullien, L. Self-immolative spacers: kinetic features, construction–property relationships, and purposes. Angew. Chem. Int. Ed. 54, 7492–7509 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bargh, J. D., Isidro-Llobet, A., Parker, J. S. & Spring, D. R. Cleavable linkers in antibody–drug conjugates. Chem. Soc. Rev. 48, 4361–4374 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gandini, A. The furan/maleimide Diels–Alder response: a flexible click on–unclick device in macromolecular synthesis. Prog. Polym. Sci. 38, 1–29 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Froidevaux, V. et al. Research of the Diels–Alder and retro-Diels–Alder response between furan derivatives and maleimide for the creation of recent supplies. RSC Adv. 5, 37742–37754 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Harris, J. M. & Chess, R. B. Impact of pegylation on prescription drugs. Nat. Rev. Drug Discov. 2, 214–221 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Fornaguera, C. et al. mRNA supply system for concentrating on antigen-presenting cells in vivo. Adv. Healthcare Mater. 7, 1800335 (2018).

    Article 

    Google Scholar
     

  • Blanco, E., Shen, H. & Ferrari, M. Ideas of nanoparticle design for overcoming organic boundaries to drug supply. Nat. Biotechnol. 33, 941–951 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, Q. et al. Selective organ concentrating on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR–Cas gene enhancing. Nat. Nanotechnol. 15, 313–320 (2020).

  • Akdis, C. A. & Blaser, Okay. Mechanisms of interleukin-10-mediated immune suppression. Immunology 103, 131–136 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Brown, M. A. & Hural, J. Capabilities of IL-4 and management of its expression. Crit. Rev. Immunol. 17, 1–32 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Goswami, R. & Kaplan, M. H. A quick historical past of IL-9. J. Immunol. 186, 3283 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Harlin, H. et al. Chemokine expression in melanoma metastases related to CD8+ T-cell recruitment. Most cancers Res. 69, 3077–3085 (2009).

    Article 

    Google Scholar
     

  • Sivick, Okay. E. et al. Magnitude of therapeutic STING activation determines CD8+ T cell-mediated anti-tumor immunity. Cell Rep. 25, 3074–3085.e3075 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lechner, M. G. et al. Immunogenicity of murine strong tumor fashions as a defining characteristic of in vivo habits and response to immunotherapy. J. Immunother. 36, 477–489 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Fitzgerald-Bocarsly, P., Dai, J. & Singh, S. Plasmacytoid dendritic cells and sort I IFN: 50 years of convergent historical past. Cytokine Development Issue Rev. 19, 3–19 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Liang, H. et al. Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat. Commun. 8, 1736 (2017).

    Article 

    Google Scholar
     

  • Spitzer, M. H. et al. Systemic immunity is required for efficient most cancers immunotherapy. Cell 168, 487–502.e415 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Poncette, L., Bluhm, J. & Blankenstein, T. The function of CD4 T cells in rejection of strong tumors. Curr. Opin. Immunol. 74, 18–24 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Schadt, L. et al. Most cancers-cell-intrinsic cGAS expression mediates tumor immunogenicity. Cell Rep. 29, 1236–1248.e1237 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Carozza, J. A. et al. Extracellular cGAMP is a cancer-cell-produced immunotransmitter concerned in radiation-induced anticancer immunity. Nat. Most cancers 1, 184–196 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Madaan, A., Verma, R., Singh, A. T., Jain, S. Okay. & Jaggi, M. A stepwise process for isolation of murine bone marrow and technology of dendritic cells. J. Biol. Strategies 1, e1 (2014).

    Article 

    Google Scholar
     

  • Latest articles

    Related articles

    Leave a reply

    Please enter your comment!
    Please enter your name here